span在线性代数中是什么意思
扩张空间。
S为一向量空间V(附于体F)的子集合。所有S的线性组合构成的集合,称为S所张成的空间,记作span(S)。
在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。
扩展资料:
线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
“以直代曲”是人们处理很多数学问题时一个很自然的思想。很多实际问题的处理,最后往往归结为线性问题,它比较容易处理。因此,线性代数在工程技术和国民经济的许多领域都有着广泛的应用,是一门基本的和重要的学科。
参考资料来源:百度百科-线性代数
span的概念比较好理解,就是若干个向量通过线性组合得到的一个向量空间(满足向量空间的所有要求)。Span列向量是矩阵中所有的列span成的空间。
S为一向量空间V(附于体F)的子集合。所有S的线性组合构成的集合,称为S所张成的空间,记作span(S)。
在数学分支线性代数之中,向量空间中一个向量集的线性生成空间(linear span,也称为线性包 linear hull),是所有包含这个集合的线性子空间的交,从而一个向量集的线性生成空间也是一个向量空间。
扩展资料
1、实向量空间R³中 {(1,0,0), (0,1,0), (0,0,1)} 是一个生成集合,这个生成集合事实上是一组基。这个空间的另一组生成集合 {(1,2,3), (0,1,2), (−1,1/2,3), (1,1,1)} 不是一组基,因为它们不是线性无关的。
2、集合 {(1,0,0), (0,1,0), (1,1,0)} 不是 R3 的生成集合;它的生成空间是 R3 中最后一个分量为零的向量组成的空间。
3、设 V={ (x,y,z) ∈R3 |x+y-z=0 },则 {(1,0,1), (0,1,1)} 是 V 的一个生成集合,也是一组基。
参考资料来源:百度百科-线性生成空间
广告 您可能关注的内容 |