证明f(x)=x+1/x在(1,+∞)上单调递增

xunhuanzi
2013-05-03 · TA获得超过268个赞
知道小有建树答主
回答量:141
采纳率:0%
帮助的人:146万
展开全部
1)导数方法:
显然f'(x)=1-1/x^2>0 (x∈(1,+∞))
所以f(x) 在(1,+∞)上单调递增

2)原始方法:
不妨设x2>x1>1,
则f(x2)-f(x1)=(x2-x1)+(x1-x2)/(x1x2)
=(x2-x1)(1-1/(x1x2))
因为x2>x1, 1>1/(x1x2)
所以f(x2)-f(x1)>0
所以f(x) 在(1,+∞)上单调递增
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式