已知tan(α+π/4)=3,计算
2sinαcosα+6cos方α-3/5cos方α-6sinαcosα-5sin方α紧急~谢谢...
2sinαcosα+6cos方α-3/5cos方α-6sinαcosα-5sin方α
紧急~谢谢 展开
紧急~谢谢 展开
5个回答
展开全部
tan(a+π/4)=(1+tana)/(1-tana)=3.解得tana=1/2
而cos^a+cos^a=(1+tan^a)cos^a=1,解得cos^a=4/5
原式=cos^a+6cos^a-3/5cos^a-3cos^a-5/4cos^a
=43/20cos^a
=43/25
望采纳,式子运算如有错误请追问,基本运算方法就是酱紫
而cos^a+cos^a=(1+tan^a)cos^a=1,解得cos^a=4/5
原式=cos^a+6cos^a-3/5cos^a-3cos^a-5/4cos^a
=43/20cos^a
=43/25
望采纳,式子运算如有错误请追问,基本运算方法就是酱紫
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tan(α+π/4)=(1+tanα)/(1-tanα)=3
∴tanα=0.5
∴sinα=0.5cosα
∴(2sinαcosα+6cos²α-3)/(5cos²α-6sinαcosα-5sin²α)=(2sinαcosα+3cos²α-3sin²α)/(5cos²α-6sinαcosα-5sin²α)=13/3
∴tanα=0.5
∴sinα=0.5cosα
∴(2sinαcosα+6cos²α-3)/(5cos²α-6sinαcosα-5sin²α)=(2sinαcosα+3cos²α-3sin²α)/(5cos²α-6sinαcosα-5sin²α)=13/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tan(a+π/4)=3
[tana+tan(π/4)]/[1-tanatan(π/4)]=3
得:
tana=1/2
则:
(2sinacosa+6cos²a-3)/(5cos²a-6sinacosa-5sin²a) 【3=3sin²a+3cos²a】
=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa) 【分子分母同除以cos²a】
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=13/3
[tana+tan(π/4)]/[1-tanatan(π/4)]=3
得:
tana=1/2
则:
(2sinacosa+6cos²a-3)/(5cos²a-6sinacosa-5sin²a) 【3=3sin²a+3cos²a】
=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa) 【分子分母同除以cos²a】
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=13/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询