证明可导函数一定连续,并举例说明连续函数一定可导
展开全部
1.证明可导函数一定连续:
设函数y=f(x)在点x处可导,即limΔy/Δx(Δx趋近于0)=f′(x)存在,由具有极限的函数与无穷小的关系知道,Δy/Δx=f′(x)+α,其中α是当Δx趋近于0时的无穷小,上式两边同乘以Δx得:Δy=f′(x)Δx+αΔx,由此可见,当Δx趋近于0时,y趋近于0.这就是说,函数y=f(x)在点x处是连续的(根据函数连续的定义),所以可导必连续
2.但是需要说明的是连续函数不一定可导,楼主可能打错了吧,在此举例:y=|x|,此函数连续,但是在x=0处不可导。
3.由上面两点可得可导函数比连续函数的要求要高。
不清楚可追问,望楼主采纳
设函数y=f(x)在点x处可导,即limΔy/Δx(Δx趋近于0)=f′(x)存在,由具有极限的函数与无穷小的关系知道,Δy/Δx=f′(x)+α,其中α是当Δx趋近于0时的无穷小,上式两边同乘以Δx得:Δy=f′(x)Δx+αΔx,由此可见,当Δx趋近于0时,y趋近于0.这就是说,函数y=f(x)在点x处是连续的(根据函数连续的定义),所以可导必连续
2.但是需要说明的是连续函数不一定可导,楼主可能打错了吧,在此举例:y=|x|,此函数连续,但是在x=0处不可导。
3.由上面两点可得可导函数比连续函数的要求要高。
不清楚可追问,望楼主采纳
展开全部
1.证明可导函数一定连续:
设函数y=f(x)在点x处可导,即limδy/δx(δx趋近于0)=f′(x)存在,由具有极限的函数与无穷小的关系知道,δy/δx=f′(x)+α,其中α是当δx趋近于0时的无穷小,上式两边同乘以δx得:δy=f′(x)δx+αδx,由此可见,当δx趋近于0时,y趋近于0.这就是说,函数y=f(x)在点x处是连续的(根据函数连续的定义),所以可导必连续
2.但是需要说明的是连续函数不一定可导,楼主可能打错了吧,在此举例:y=|x|,此函数连续,但是在x=0处不可导。
3.由上面两点可得可导函数比连续函数的要求要高。
不清楚可追问,望楼主采纳
设函数y=f(x)在点x处可导,即limδy/δx(δx趋近于0)=f′(x)存在,由具有极限的函数与无穷小的关系知道,δy/δx=f′(x)+α,其中α是当δx趋近于0时的无穷小,上式两边同乘以δx得:δy=f′(x)δx+αδx,由此可见,当δx趋近于0时,y趋近于0.这就是说,函数y=f(x)在点x处是连续的(根据函数连续的定义),所以可导必连续
2.但是需要说明的是连续函数不一定可导,楼主可能打错了吧,在此举例:y=|x|,此函数连续,但是在x=0处不可导。
3.由上面两点可得可导函数比连续函数的要求要高。
不清楚可追问,望楼主采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询