初中勾股定理证明题 求解啊??? 5
2个回答
展开全部
解本题是初二的勾股定理的证明,主要是利用面积相等证明,
S梯形D'C'CB=SΔAD'C'+SΔAC'C'+SΔABC
S梯形D'C'CB=1/2(C'D'+BC)*BD'=1/2(a+b)*(a+b)
SΔAD'C'=1/2ab
SΔABC=1/2ab
注意到ΔAD'C'全等于ΔCBA
即∠C'AD'=∠ACB,AC'=AC
又因为∠ACB+∠BAC=90°
即∠C'AD'+∠BAC=90°
所以∠C'AC=180°-(∠C'AD'+∠BAC)=90°
即SΔAC'C'=1/2AC'*AC=1/2AC²=1/2c²
即S梯形D'C'CB=SΔAD'C'+SΔAC'C'+SΔABC
即1/2(a+b)*(a+b)=1/2ab+1/2c²+1/2ab
即(a+b)*(a+b)=ab+c²+ab
即a²+2ab+b²=2ab+c²
即a²+b²=c²
S梯形D'C'CB=SΔAD'C'+SΔAC'C'+SΔABC
S梯形D'C'CB=1/2(C'D'+BC)*BD'=1/2(a+b)*(a+b)
SΔAD'C'=1/2ab
SΔABC=1/2ab
注意到ΔAD'C'全等于ΔCBA
即∠C'AD'=∠ACB,AC'=AC
又因为∠ACB+∠BAC=90°
即∠C'AD'+∠BAC=90°
所以∠C'AC=180°-(∠C'AD'+∠BAC)=90°
即SΔAC'C'=1/2AC'*AC=1/2AC²=1/2c²
即S梯形D'C'CB=SΔAD'C'+SΔAC'C'+SΔABC
即1/2(a+b)*(a+b)=1/2ab+1/2c²+1/2ab
即(a+b)*(a+b)=ab+c²+ab
即a²+2ab+b²=2ab+c²
即a²+b²=c²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询