已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π/2)
2个回答
展开全部
(1)解析:由图所示:T=11π/12+π/12=π==>ω=2π/T=2,A=2
∴函数f(x)=2sin(2x+φ)
f(x)=2sin(2x+φ)==> f(-π/12)=2sin(-π/6+φ)=0==>φ=π/6
∴f(x)=2sin(2x+π/6)
(2)解析:g(x)=f(x-π/4)=2sin(2x-π/2+π/6) =2sin(2x-π/3)
设cosθ=(1+√3)/(2√2),sinθ=(1-√3)/(2√2)
F(x)+g(x)= 2sin(2x+π/6)+ 2sin(2x-π/3)=2√2sin(2x+θ)
∵y=√6,区间(0,π)
2√2sin(2x+θ)= √6==> sin(2x+θ)= √3/2==>2x+θ=π/3==>x=(π-3θ)/6;2x+θ=2π/3==>x=(2π-3θ)/6
∴直线y=√6与函数y=f(x)+g(x)图像在(0,π)内交点为((π-3θ)/6, √6),((2π-3θ)/6, √6)
∴函数f(x)=2sin(2x+φ)
f(x)=2sin(2x+φ)==> f(-π/12)=2sin(-π/6+φ)=0==>φ=π/6
∴f(x)=2sin(2x+π/6)
(2)解析:g(x)=f(x-π/4)=2sin(2x-π/2+π/6) =2sin(2x-π/3)
设cosθ=(1+√3)/(2√2),sinθ=(1-√3)/(2√2)
F(x)+g(x)= 2sin(2x+π/6)+ 2sin(2x-π/3)=2√2sin(2x+θ)
∵y=√6,区间(0,π)
2√2sin(2x+θ)= √6==> sin(2x+θ)= √3/2==>2x+θ=π/3==>x=(π-3θ)/6;2x+θ=2π/3==>x=(2π-3θ)/6
∴直线y=√6与函数y=f(x)+g(x)图像在(0,π)内交点为((π-3θ)/6, √6),((2π-3θ)/6, √6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询