求解一到高数题,需要详细过程,谢谢!!!!!!!!
1个回答
展开全部
(1)f(x)≤M 知∫[a到b] f(x)^ndx ≤(b-a)M^n
所以【∫[a到b] f(x)^ndx】^(1/n)≤(b-a)^(1/n)M
而 (b-a)^(1/n)的极限为1,所以【∫[a到b] f(x)^ndx】^(1/n)的极限≤M
(2) 设f(x0)=M,则存在x0的某个邻域(x1,x2)其中,f(x)>M-ε
则∫[a到b] f(x)^ndx>(x2-x1) (M-ε)^n
所以【∫[a到b] f(x)^ndx】^(1/n)≥(x2-x1)^(1/n)(M-ε)
而 (x2-x1)^(1/n)的极限为1,所以【∫[a到b] f(x)^ndx】^(1/n)的极限≥M-ε
由ε任意性可知【∫[a到b] f(x)^ndx】^(1/n)的极限≥M
综合(1)(2)可知【∫[a到b] f(x)^ndx】^(1/n)的极限=M
所以【∫[a到b] f(x)^ndx】^(1/n)≤(b-a)^(1/n)M
而 (b-a)^(1/n)的极限为1,所以【∫[a到b] f(x)^ndx】^(1/n)的极限≤M
(2) 设f(x0)=M,则存在x0的某个邻域(x1,x2)其中,f(x)>M-ε
则∫[a到b] f(x)^ndx>(x2-x1) (M-ε)^n
所以【∫[a到b] f(x)^ndx】^(1/n)≥(x2-x1)^(1/n)(M-ε)
而 (x2-x1)^(1/n)的极限为1,所以【∫[a到b] f(x)^ndx】^(1/n)的极限≥M-ε
由ε任意性可知【∫[a到b] f(x)^ndx】^(1/n)的极限≥M
综合(1)(2)可知【∫[a到b] f(x)^ndx】^(1/n)的极限=M
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |