如图,在△ABC中,∠B>∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E
(1)求证:∠DAE=1/2(∠B-∠C);(2)把上图中AD⊥BC于点D换成F为AF上的一点,FG⊥BC于点G,这时∠EFG是否仍等于1/2(∠B-∠C)?试证明你的结...
(1)求证:∠DAE=1/2(∠B-∠C);
(2)把上图中AD⊥BC于点D换成F为AF上的一点,FG⊥BC于点G,这时∠EFG是否仍等于1/2(∠B-∠C)?试证明你的结论;
(3)若把(2)中的AD⊥BC于点D换成F为AE所在直线上的一点,FG⊥BC于点G,结论仍存在么?
速度!!! 展开
(2)把上图中AD⊥BC于点D换成F为AF上的一点,FG⊥BC于点G,这时∠EFG是否仍等于1/2(∠B-∠C)?试证明你的结论;
(3)若把(2)中的AD⊥BC于点D换成F为AE所在直线上的一点,FG⊥BC于点G,结论仍存在么?
速度!!! 展开
1个回答
展开全部
(1)从结论出发 2∠DAE=∠B-∠C=2∠BAE-2∠BAD=∠CAB-2∠BAD=∠B-∠C,即∠BAD+∠C=2∠BAD+∠B∵∠CAB+∠B+∠C=180°,所以∠CAB+∠C=180°-∠B,
所以有180°-∠B=2∠BAD+∠B,所以∠B+∠BAD=90°,这个的话很容易证明吧。这样就倒推一下就证明了(1)小题。
为什么要这么个解题思路,因为从结论看,1/2(∠B-∠C)找不到与其相等或者成比例关系的角,因此要对结论进行变换,所以出现了我之前的分析过程,将相减的角移动后,变成相加,因为找2个角相减后与其相等的角不如找2个角相等的角。
(2)这里就很好证明了:FG⊥BC,AD⊥BC,所以FG∥AD,所以∠EFG=∠EAD(同为角相等),所以∠EFG=1/2(∠B-∠C)
(3)同(2)的证明
所以有180°-∠B=2∠BAD+∠B,所以∠B+∠BAD=90°,这个的话很容易证明吧。这样就倒推一下就证明了(1)小题。
为什么要这么个解题思路,因为从结论看,1/2(∠B-∠C)找不到与其相等或者成比例关系的角,因此要对结论进行变换,所以出现了我之前的分析过程,将相减的角移动后,变成相加,因为找2个角相减后与其相等的角不如找2个角相等的角。
(2)这里就很好证明了:FG⊥BC,AD⊥BC,所以FG∥AD,所以∠EFG=∠EAD(同为角相等),所以∠EFG=1/2(∠B-∠C)
(3)同(2)的证明
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询