已知数列an的前n项和Sn=3^n -1,数列bn满足b1=1,bn=3b(n-1)+an,记数列bn的前n项和为Tn.求Tn

xuzhouliuying
高粉答主

2013-05-06 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解;
n=1时,a1=S1=3-1=2
n≥2时,an=Sn-S(n-1)=3ⁿ-1-3^(n-1)+1=2×3^(n-1)
n=1时,a1=2×1=2,同样满足通项公式
数列{an}的通项公式为an=2×3^(n-1)
bn=3b(n-1)+2×3^(n-1)
等式两边同除以3ⁿ
bn/3ⁿ=b(n-1)/3^(n-1) +2/3
bn/3ⁿ-b(n-1)/3^(n-1)=2/3,为定值。
b1/3=1/3,数列{bn/3ⁿ}是以1/3为首项,2/3为公比的等比数列。
bn/3ⁿ=(1/3)(2/3)^(n-1)=2^(n-1)/3ⁿ
bn=2^(n-1)
Tn=b1+b2+...+bn=1+2+...+2^(n-1)=1×(2ⁿ-1)/(2-1)=2ⁿ-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式