在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知向量m=(cosB,-cosA),向量n=(2c+b,a)且向量m∥向量n
2个回答
展开全部
∵向量m∥向量n,∴cosB、cosA均不为0,且-cosB/cosA = (2c+b)/a = (2sinC+sinB)/sinA
∴-sinAcosB = 2sinCcosA + sinBcosA ,∴2sinCcosA + sin(A+B) = 0 = sinC·(1 + 2cosA)
∵C是内角,∴sinC≠0,∴cosA = -1/2,A = 2π/3,B+C=π/3
而sinB+sinC = 2sin[(B+C)/2]·cos[(B-C)/2] = cos[(B-C)/2],∵0<B,C<π/3,∴-π/3<B-C<π/3
∴cos[(B-C)/2]∈[1/2 ,1],即sinB+sinC的取值范围是[1/2,1]
a^2 = b^2+c^2-2bc·cosA = (b+c)^2-bc,∴bc = 64-48 = 16
∴S△ABC = (1/2)bc·sinA = 4√3
∴-sinAcosB = 2sinCcosA + sinBcosA ,∴2sinCcosA + sin(A+B) = 0 = sinC·(1 + 2cosA)
∵C是内角,∴sinC≠0,∴cosA = -1/2,A = 2π/3,B+C=π/3
而sinB+sinC = 2sin[(B+C)/2]·cos[(B-C)/2] = cos[(B-C)/2],∵0<B,C<π/3,∴-π/3<B-C<π/3
∴cos[(B-C)/2]∈[1/2 ,1],即sinB+sinC的取值范围是[1/2,1]
a^2 = b^2+c^2-2bc·cosA = (b+c)^2-bc,∴bc = 64-48 = 16
∴S△ABC = (1/2)bc·sinA = 4√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询