
设函数f(x)=2x-cosx,{an}是公差为π/4的等差数列,
f(a1)+f(a2)+f(a3)=3π,则f(a1)+f(a2)+f(a3)+……+f(a10)=...
f(a1)+f(a2)+f(a3)=3π,则f(a1)+f(a2)+f(a3)+……+f(a10)=
展开
展开全部
{an}是公差为π/4的等差数列,所以:an=a1+(n-1)π/4;
f(a1)+f(a2)+f(a3)=2a1-cosa1+2(a1+π/4)-cos(a1+π/4)+2(a1+π/2))-cos(a1+π/2)
=6a1+3π/2-cos(a1+π/4)=3π——》a1=π/4,即:an=nπ/4
f(a1)+f(a2)+f(a3)+……+f(a10)=2(π/4+2π/4+...+10π/4)-(cosπ/4+cos2π/4+...+cos10π/4)
=π/2*10*(10+1)/2-cosπ/4=55π/2-v2/2。
f(a1)+f(a2)+f(a3)=2a1-cosa1+2(a1+π/4)-cos(a1+π/4)+2(a1+π/2))-cos(a1+π/2)
=6a1+3π/2-cos(a1+π/4)=3π——》a1=π/4,即:an=nπ/4
f(a1)+f(a2)+f(a3)+……+f(a10)=2(π/4+2π/4+...+10π/4)-(cosπ/4+cos2π/4+...+cos10π/4)
=π/2*10*(10+1)/2-cosπ/4=55π/2-v2/2。
展开全部
因为{an}是公差为∏/4的等差数列,∴a1+a3=2a2.
f(a1)+f(a2)+f(a3)=2(a1+a2+a3)-(cosa1+cosa2+cosa3)=6a2-(cosa1+cosa2+cosa3)
∵cosa1+cosa3=cos(a2-∏/4)+cos(a2+∏/4)=2cosa2cos(-∏/2)=0(和差化积)
∴6a2-cosa2=3∏ ∵cosa2不含∏,∴cosa2=0 ∴a2=∏/2
于是a1=∏/4 an=n∏
f(a1)+f(a2)+ ….+f(a10)=2(a1+a2+…+a10)-(cosa1+cosa2+…+cosa10)
=55∏/2-√2/2
f(a1)+f(a2)+f(a3)=2(a1+a2+a3)-(cosa1+cosa2+cosa3)=6a2-(cosa1+cosa2+cosa3)
∵cosa1+cosa3=cos(a2-∏/4)+cos(a2+∏/4)=2cosa2cos(-∏/2)=0(和差化积)
∴6a2-cosa2=3∏ ∵cosa2不含∏,∴cosa2=0 ∴a2=∏/2
于是a1=∏/4 an=n∏
f(a1)+f(a2)+ ….+f(a10)=2(a1+a2+…+a10)-(cosa1+cosa2+…+cosa10)
=55∏/2-√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询