有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次
1个回答
展开全部
先分成3组,每组4个,标号1,2,3,
第一次称:1放天平左,2放天平右
如果平,则重量异常的球在3组。
如果重量异常的球在1组或2组,假设1组是轻的,把1组对半分,每组两个放到天平上称(第二次称),如果平,则可知重量异常的球在2组且重量比正常的重,如果不平则可知在1组且为轻,第三次就很容易称出来了。
接着讨论重量异常的球在3组,把第三组四个球编号A,B,C,D,若A与B不平衡(第二次称),只须A与1组中一个好球比(第三次称),如平,则B坏,不平,则A坏,且知道轻重。
A与B称若平衡(第二次称),则坏球在C,D中,第三次只须把C与1组中的一个好球比(第三次称),如平衡,则D为坏,如不平则C为坏,且知道轻重。
第一次称:1放天平左,2放天平右
如果平,则重量异常的球在3组。
如果重量异常的球在1组或2组,假设1组是轻的,把1组对半分,每组两个放到天平上称(第二次称),如果平,则可知重量异常的球在2组且重量比正常的重,如果不平则可知在1组且为轻,第三次就很容易称出来了。
接着讨论重量异常的球在3组,把第三组四个球编号A,B,C,D,若A与B不平衡(第二次称),只须A与1组中一个好球比(第三次称),如平,则B坏,不平,则A坏,且知道轻重。
A与B称若平衡(第二次称),则坏球在C,D中,第三次只须把C与1组中的一个好球比(第三次称),如平衡,则D为坏,如不平则C为坏,且知道轻重。
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询