已知函数f(x)=x-1-alnx (a∈R). 求证:f(x)≥0恒成立的充要条件是a=1

②必要性f'(x)=1-ax=x-ax,其中x>0(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数而f(1)=0,所以当x∈(0,1)时,... ②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1

在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
展开
EXCEL精选技巧
2013-05-07 · 超过12用户采纳过TA的回答
知道答主
回答量:58
采纳率:0%
帮助的人:16.4万
展开全部
当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a, ∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式