证明二元函数极限不存在?
2个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
分子分母同乘以
根号(xy+1)+1
分子就成了(xy+1)-1 = xy
lim 根号(xy+1)+1=1
所以原式=lim...xy/(x+y)
然后,可以再把分子xy翻下去分母,原式就变成
lim 1/ (1/x+1/y)
这样就可以做了。
根号(xy+1)+1
分子就成了(xy+1)-1 = xy
lim 根号(xy+1)+1=1
所以原式=lim...xy/(x+y)
然后,可以再把分子xy翻下去分母,原式就变成
lim 1/ (1/x+1/y)
这样就可以做了。
追问
这样刚好证明了极限为0,是存在的
追答
首先纠正个小错误,lim 根号(xy+1)+1=2
所以原式子=(1/2) lim 1/ (1/x+1/y)
如果x,y同左同右,那么结果极限为0,没问题。
但如果x,y一左一右呢?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询