fortran90 开立方根的符号

 我来答
匿名用户
2013-05-07
展开全部
CBRT
This funcion evaluates the cube root.

Function Return Value
CBRT — Function value. (Output)

Required Arguments
X — Argument for which the cube root is desired. (Input)

FORTRAN 90 Interface
Generic: CBRT (X)a

Specific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, and Z_CBRT.

FORTRAN 77 Interface
Single: CBRT (X)

Double: The double precision name is DCBRT.

Complex: The complex precision name is CCBRT.

Double Complex: The double complex precision name is ZCBRT.

Description
The function CBRT(X) evaluates x1/3. All arguments are legal. For complex argument, x, the value of |x| must not overflow.

Comments
For complex arguments, the branch cut for the cube root is taken along the negative real axis. The argument of the result, therefore, is greater than –π/3 and less than or equal to π/3. The other two roots are obtained by rotating the principal root by 3 π/3 and π/3.

Example 1
In this example, the cube root of 3.45 is computed and printed.

USE CBRT_INT

USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT

REAL VALUE, X

! Compute

X = 3.45

VALUE = CBRT(X)

! Print the results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CBRT(', F6.3, ') = ', F6.3)

END

Output

CBRT( 3.450) = 1.511

Additional Example
Example 2
In this example, the cube root of –3 + 0.0076i is computed and printed.

USE UMACH_INT
USE CBRT_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT

COMPLEX VALUE, Z

! Compute

Z = (-3.0, 0.0076)

VALUE = CBRT(Z)

! Print the results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (’ CBRT((’, F7.4, ’,’, F7.4, ’)) = (’, &

F6.3, ’,’, F6.3, ’)’)

END

Output

CBRT((-3.0000, 0.0076)) = ( 0.722, 1.248)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
AiPPT
2024-09-19 广告
随着AI技术的飞速发展,如今市面上涌现了许多实用易操作的AI生成工具1、简介:AiPPT: 这款AI工具智能理解用户输入的主题,提供“AI智能生成”和“导入本地大纲”的选项,生成的PPT内容丰富多样,可自由编辑和添加元素,图表类型包括柱状图... 点击进入详情页
本回答由AiPPT提供
匿名用户
2013-05-07
展开全部
可用指数函数,如X的开3次方可以表示为X**(1.0/3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式