线性代数有关基础解系的证明
已知x1,x2,x3是齐次方程组AX=0的一个基础解系,记n1=x1-x2,n2=2x2+x3,n3=-x3+3x1,问n1,n2,n3为什么可以作为AX=0的基础解系。...
已知x1,x2,x3是齐次方程组AX=0的一个基础解系,记n1=x1-x2,n2=2x2+x3,n3=
-x3+3x1,问n1,n2,n3为什么可以作为AX=0的基础解系。 展开
-x3+3x1,问n1,n2,n3为什么可以作为AX=0的基础解系。 展开
2个回答
2013-05-07
展开全部
n1,n2,n3三者线性无关 所以可以作为基础解系
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询