已知函数fx=x+1,x≤0.=log2x,x>0则函数f(fx)+1的零点个数是
展开全部
X ≤0时,f(X)=X+1,有一个零点X=-1,
X>0时有一个零点,1的对数0等于,∴X=1。
共有两个零点。
X>0时有一个零点,1的对数0等于,∴X=1。
共有两个零点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由前面的函数可求的
①x<=-1时
y=f(x+1)+1=(x+1)+1+1=x+3
此时令y=0可得,x=-3<-1
所以此时y有一个零点x=-3
②-1<x<=0时
y=f(x+1)+1=log(2x+2)+1
此时令y=0可得,x=-0.95,在(-1,0]内
所以此时y有一个零点x=-0.95
③0<x<=1时
y=f(log(2x))+1=log(2x)+2
此时令y=0可得,x=10^(-2)/2=1/200=0.005,在(0,1]内
所以此时y有一个零点x=0.005
④x>1时
y=f(log2x)+1=log(2log(2x))+1
此时令y=0可得,x=10^(1/20)/2≈0.561<1,显然在此范围内,y无零点
综上,y共有三个零点。
①x<=-1时
y=f(x+1)+1=(x+1)+1+1=x+3
此时令y=0可得,x=-3<-1
所以此时y有一个零点x=-3
②-1<x<=0时
y=f(x+1)+1=log(2x+2)+1
此时令y=0可得,x=-0.95,在(-1,0]内
所以此时y有一个零点x=-0.95
③0<x<=1时
y=f(log(2x))+1=log(2x)+2
此时令y=0可得,x=10^(-2)/2=1/200=0.005,在(0,1]内
所以此时y有一个零点x=0.005
④x>1时
y=f(log2x)+1=log(2log(2x))+1
此时令y=0可得,x=10^(1/20)/2≈0.561<1,显然在此范围内,y无零点
综上,y共有三个零点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询