3个回答
展开全部
证明:连接BM,DM
∵∠ABC=∠ADC=90°M,N分别是AC,BD的中点
∴BM=1/2AC,DM=1/2AC(直角三角形斜边中线等于斜边一半)
∴MB=MD
∵N是BD中点
∴MN⊥BD(等腰三角形三线合一)
∵∠ABC=∠ADC=90°M,N分别是AC,BD的中点
∴BM=1/2AC,DM=1/2AC(直角三角形斜边中线等于斜边一半)
∴MB=MD
∵N是BD中点
∴MN⊥BD(等腰三角形三线合一)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
MN⊥BD成立.
证明∵∠ABC=∠ADC=90°,M是AC的中点,
∴DM=BM.
又∵N是BD的中点,
∴MN⊥BD.
证明∵∠ABC=∠ADC=90°,M是AC的中点,
∴DM=BM.
又∵N是BD的中点,
∴MN⊥BD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询