如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y= 2 x 于点D,过D作两坐标轴的垂线DC、DE,连接OD

(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证AD•BD为定值。(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的... (1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD•BD为定值。
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
(4)在(3)中,在y轴上是否存在一点P,使△DOP是以OD为腰的等腰三角形,若存在请写出O点坐标并说明理由,若不存在也请说明理由。
图:http://img.jyeoo.net/quiz/images/201108/20/8eda78ec.png
展开
hql______
2013-05-10 · TA获得超过3.6万个赞
知道大有可为答主
回答量:8385
采纳率:85%
帮助的人:3948万
展开全部
(1)A(0,b),B(-b,0),则OA=OB=b
故△AOB为等腰直角三角形,∠ABO=45°
在△BED中,∠BDE=180°-∠EBD-∠BED=180°-45°-90°=45°
∠BDE=1/2∠CDE
所以AD平分∠CDE
(2)D点坐标(x,y)同时满足方程y=x+b和xy=2
AD*BD=√2OE*√2BE=2x*(b+x)=2xy=4为定值
(3)假设存在直线AB使得四边形OBCD为平行四边形,需要CD=BO=b
x=b代入方程y=x+b和xy=2,
解得y=2,b=1
所以直线AB为y=x+1
(4)联立y=x+1和xy=2,解得D(1,2),OD=√[(1-0)^2+(2-0)^2]=√5
1)OD=OP=√5,显然P(0,√5)或(0,-√5)
2)OD=DP=√5,设P(0,y)
PD=√[(1-0)^2+(2-y)^2]=√5,解得y=0(与原点重合,舍去)或y=4
综上,P(0,√5)或(0,-√5)或(0,4)
1243724041
2013-05-09 · TA获得超过120个赞
知道答主
回答量:128
采纳率:0%
帮助的人:57.6万
展开全部
图片地址 不行
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式