
已知点P为双曲线x2/16 - y2/9=1右支上一点,F1,F2分别为左右焦点,
2个回答
展开全部
解:依题设,Q为△PF1F2的内心,则 Q到三边的距离相等,设为d
由S△QPF1=S△QPF2+λS△QF1F2,得 PF1*d/2=PF2*d/2+λF1F2*d/2
即 PF1-PF2=λF1F2 亦即 λ=(PF1-PF2)/F1F2
由点P为双曲线x²/16-y²/9=1右支上一点,F1,F2分别为左右焦点,得
PF1-PF2=2a=8,F1F2=2c=2根号(16+9)=10
故 λ=4/5
由S△QPF1=S△QPF2+λS△QF1F2,得 PF1*d/2=PF2*d/2+λF1F2*d/2
即 PF1-PF2=λF1F2 亦即 λ=(PF1-PF2)/F1F2
由点P为双曲线x²/16-y²/9=1右支上一点,F1,F2分别为左右焦点,得
PF1-PF2=2a=8,F1F2=2c=2根号(16+9)=10
故 λ=4/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询