1 +(sinx)^2积分

1/(1+sinx^2的不定积分... 1/(1+sinx^2的不定积分 展开
匿名用户
2013-05-10
展开全部
原式=∫[1/(sinx)^2]/[1+1/(sinx)^2]dx
=-∫1/[2+(cotx)^2]d(cotx)
=-(1/√2)∫1/[1+(cotx/√2)^2]d(cotx/√2)
=-(1/√2)arctan(cotx/√2)+C

或者另外一种方法:
1.分子分母同时除以(cosx)^2
2.换元:原式=∫1/[1+2(tanx)^2]d(tanx)=1/2(∫1/[(1/√2)^2+(tanx)^2]d(tanx))
3.套公式得:-(1/√2)arctan(cotx/√2)+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式