如图,在等腰三角形ABC中,∠ACB=90°,AC=BC.点D是AB上一点(与点B不重合),以CD为边作等腰直角三角形DCE,其中
展开全部
AE=BD
因为∠BCD+∠CDA=90 ,∠CDA+∠ACE=90 所以∠BCD=∠ACE
又因为AC=BC CD=CE 所以三角形BCD全等于三角形ACE(SAS)
所以AC=BE
因为∠BCD+∠CDA=90 ,∠CDA+∠ACE=90 所以∠BCD=∠ACE
又因为AC=BC CD=CE 所以三角形BCD全等于三角形ACE(SAS)
所以AC=BE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:结论:AE=BD
理由:因为∠ACB=90°,∠DCE=90°
所以∠BCD=∠ACE
因为BC=AC,DC=EC
所以△BCD≌△ACE(SAS)
所以AE=BD
理由:因为∠ACB=90°,∠DCE=90°
所以∠BCD=∠ACE
因为BC=AC,DC=EC
所以△BCD≌△ACE(SAS)
所以AE=BD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询