定积分0到-π/2(COSX)的偶次幂的公式
有公式∫(sinx)^ndx=∫(cosx)^ndx(0~π/2)n为奇数时=[(n-1)/n]*[(n-3)/(n-2)]*...*(2/3)*1n为偶数时=[(n-1...
有公式∫(sinx)^ndx=∫(cosx)^ndx (0~π/2)
n为奇数时=[(n-1)/n]*[(n-3)/(n-2)]*...*(2/3)*1
n为偶数时=[(n-1)/n]*[(n-3)/(n-2)]*...*(1/2)*(π/2)
这个我知道 我想知道在积分范围为0到-π/2时适用吗?如果不适用有别的公式吗? 展开
n为奇数时=[(n-1)/n]*[(n-3)/(n-2)]*...*(2/3)*1
n为偶数时=[(n-1)/n]*[(n-3)/(n-2)]*...*(1/2)*(π/2)
这个我知道 我想知道在积分范围为0到-π/2时适用吗?如果不适用有别的公式吗? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询