一道初1数学题利用不等式性质解决的问题
阅读下列材料,若要比较代数式a与b的大小,我们可利用不等式的性质来说明。例如:a-b>0,则a>ba-b=0,则a=ba-b<0,则a<b像上述比较两个代数式的大小方法叫...
阅读下列材料,若要比较代数式a与b的大小,我们可利用不等式的性质来说明。例如:a-b >0 ,则 a > b a-b=0 ,则 a=b a-b < 0 ,则 a <b像上述比较两个代数式的大小方法叫造差法,造差法是比较两个代数式值的大小的一种常用的方法,也是一种很有效的方法。利用上述提供的信息,试比较a�0�5 (a-b) 与 b�0�5 (b-a)的大小。不要百度拉来的
展开
2个回答
2013-05-11
展开全部
当a-b>0时,则a>b所以a-b为正,根据不等式基本性质2,得 aa(a-b)>bb(b-a).
当a-b=0时,则a=b,所以aa(a-b)=bb(b-a)
当a-b<0时,则a<b所以a-b为负,根据不等式基本性质3,得aa(a-b)<bb(b-a).
当然对不对我也不知道,我只是口算了一下。
当a-b=0时,则a=b,所以aa(a-b)=bb(b-a)
当a-b<0时,则a<b所以a-b为负,根据不等式基本性质3,得aa(a-b)<bb(b-a).
当然对不对我也不知道,我只是口算了一下。
2013-05-11
展开全部
a�0�5 (a-b)- b�0�5 (b-a)=(a�0�5+b�0�5)(a-b) 因为a�0�5+b�0�5>= 0 所以 当 a>b 时a�0�5 (a-b)>b�0�5 (b-a) 当 a<b时 a�0�5 (a-b)<b�0�5 (b-a) 当 a=b时a�0�5 (a-b)=b�0�5 (b-a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询