如图,抛物线y=-x²-x+2与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,它的顶点为M

点P为线段AM上一动点,过点P作PN⊥x轴,垂足为N,设ON的长为m,四边形BCPN的面积为S,解决下列问题:(1)点M的坐标是(_____,_____);(2)求S与m... 点P为线段AM上一动点,过点P作PN⊥x轴,垂足为N,设ON的长为m,四边形BCPN的面积为S,解决下列问题:

(1)点M的坐标是(_____,_____);
(2)求S与m之间的函数解析式,并写出自变量m的取值范围;
(3)当m为何值时,PC⊥BC?
(4)将△BOC补成矩形,使△BOC的两个顶点B、C成为矩形的一边的两个顶点,第三个顶点落在矩形这一边的对边上,请求出矩形未知顶点的坐标.

要有图解,否则不采纳
展开
yuyou403
2013-05-11 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:9928万
展开全部

答:

(1)抛物线y=-x^2-x+2=-(x+1/2)^2+9/4,所以顶点坐标M(-1/2,9/4)


(2)抛物线y=-x^2-x+2,令y=0,得点A(-2,0),点B(1,0);令x=0,得点C(0,2)

直线AM方程为:y=(x+2)(9/4-0)/(-1/2+2)=3x/2+3,设点P(p,3p/2+3),则点N为(p,0)

-2<=p<=-1/2,则:1/2<=m=-p<=2。

S=S梯形OCPN+S三角形OBC

=(3p/2+3+2)*m/2+1*2/2

=(-3m/2+5)*m/2+1

=-3m^2/4+5m/2+1,1/2<=m<=2


(3)PC⊥BC时,它们的斜率乘积为-1:[(3p/2+3-2)/(p-0)]*[(2-0)/(0-1)]=-1,p=-1.

所以:m=-p=1。


(4)△BOC补全为矩形见图,意思是补全后BC是矩形的其中一条边,并且保证三角形顶点O落在BC的对边上。显然,BC的对边即矩形的另外一条边WQ//BC并且经过原点O。所以直线WQ的斜率与BC边的斜率相同都为-2。.设WQ直线方程为:y=-2x

因为WC⊥BC,QB⊥BC,所以WC和QB的斜率相同都为:-1/(-2)=1/2,所以:

直线WC为y-2=(x-0)/2,即:y=x/2+2

直线QB为y-0=(x-1)/2,即:y=x/2-1/2

以上两直线分别与WQ直线y=-2x联立可求得点W(-4/5,8/5),点Q(1/5,-2/5)。

所以补全后矩形的未知顶点坐标为:点W(-4/5,8/5)和点Q(1/5,-2/5)

百度网友aa96858
2013-05-11 · TA获得超过8428个赞
知道大有可为答主
回答量:2888
采纳率:0%
帮助的人:2310万
展开全部
M(-1/2,9/4)
S=3/4x^2+5/2x+1 (-2<x<0)
m=-1,PC⊥BC
(-4/5,8/5),(根号3/5,-2根号3/5)
更多追问追答
追问
第四问矩形那个什么意思
追答
步骤很多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
life菲常迷恋
2013-05-11
知道答主
回答量:10
采纳率:0%
帮助的人:6.2万
展开全部
解:(1),抛物线的方程即为:y=-(x+1/2)^2+9/4 故M坐标为(-1/2,9/4)
(2),易知A( -2,0) B(1,0),C(0,2)则AM的方程:3x-2y+6=0,P在AM上,P(-m,-3m/2 +3)
所以S四边形ONPC 2s=[2+(-3m/2 +3)]m 即s=5m/2-3m^2/4其中0.5≦m≦2
(3),由(2)可知Kbc=-2,Kpc=3/2-1/m,PC⊥BC,则Kbc.Kpc=-1,带入解得m=1
(4),由题意可知对边两点在直线y=-2x...①上,设为DE两点,则CD方程为: x-2y+4=0...②BE的方程为:x-2y-1=0...③
联立①②解得D(-4/5,8/5)
联立①③解得E(1/5,-2/5)
注:Kbc表示直线BC的斜率,由于m是ON的长,所以必然m大于0,故前面的回答者错误,虽然题简单,但是打上来要花很久的时间,还请采纳啊,谢谢。
追问
第四问不懂
追答
请过O点作直线平行于BC,再分别过C作CD⊥DE于D,过B作BE⊥DE于E,你就应该明白了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式