
已知数列{an}的前n项和为sn,满足a(n+1)=sn+2n 且a1=0
(1)若bn=an+2求证{bn}是等比数列。(2)若C若n=1/log2(bn+1)log2(bn)求数列{Cn}的前你n项和Tn...
(1)若bn=an+2求证{bn}是等比数列。(2)若C若n=1
/log2(bn+1)log2(bn) 求数列{Cn}的前你n项和Tn 展开
/log2(bn+1)log2(bn) 求数列{Cn}的前你n项和Tn 展开
1个回答
2013-05-11
展开全部
证明:(1)an+1 = Sn + 2n①,当n ≥ 2,n∈N* ,an = Sn-1 + 2(n – 1)②,把① - ②,可得an+1 – an = Sn – Sn-1 + 2 = an + 2 => an+1 = 2an + 2,而bn = an + 2 => an = bn – 2 => an+1 = bn+1 – 2 => bn+1 – 2 = 2(bn – 2) + 2 = 2bn – 2 => bn+1 = 2bn => bn+1 /bn = 2,所以数列{b<sub>n</sub>}构成一个以b1 = a1 + 2 = 2为首项,2为公比的等比数列,得证;
解:(2)由(1)可知bn = 2*2n-1 = 2n ,n∈N* ,Cn = 1/[log2(bn+1)log2(bn)] = 1/[log2(2n+1)log2(2n)] = 1/[n(n+1)] = 1/n – 1/(n + 1),所以数列{C<sub>n</sub>}的前n项的和Tn = C1 + C2 + …… + Cn = (1/1 – 1/2) + (1/2 – 1/3) + …… + [1/n – 1/(n + 1)] = 1 – 1/(n + 1) = n/(n + 1) ,即Tn = n/(n + 1),n∈N* 。
解:(2)由(1)可知bn = 2*2n-1 = 2n ,n∈N* ,Cn = 1/[log2(bn+1)log2(bn)] = 1/[log2(2n+1)log2(2n)] = 1/[n(n+1)] = 1/n – 1/(n + 1),所以数列{C<sub>n</sub>}的前n项的和Tn = C1 + C2 + …… + Cn = (1/1 – 1/2) + (1/2 – 1/3) + …… + [1/n – 1/(n + 1)] = 1 – 1/(n + 1) = n/(n + 1) ,即Tn = n/(n + 1),n∈N* 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询