已知向量a(cosθ,sinθ)向量b=(根号3,1)当向量a⊥向量b,求tan2θ(2)/向量a+向量b/(模)的最大值
展开全部
(1)当向量a⊥向量b,=>
√3cosθ+sinθ=2sin(θ+π/6)=0
=>θ+π/6=2kπ
=>θ=2kπ-π/6
=>tan2θ=tan(4kπ-π/3)=-√3
(2)la+bl²
=a²+2a.b+b²
=1+2+2sin(θ+π/6)
=3+2sin(θ+π/6)
=>1≤la+bl²≤5
=>1≤la+bl≤√5
√3cosθ+sinθ=2sin(θ+π/6)=0
=>θ+π/6=2kπ
=>θ=2kπ-π/6
=>tan2θ=tan(4kπ-π/3)=-√3
(2)la+bl²
=a²+2a.b+b²
=1+2+2sin(θ+π/6)
=3+2sin(θ+π/6)
=>1≤la+bl²≤5
=>1≤la+bl≤√5
追问
这一步a²+2a.b+b²是怎么变成1+2+2sin(θ+π/6)的?为什么2ab变成了2sin(θ+π/6)?
追答
a²=cos²θ+sin²θ=1 同理:b²=2
ab=√3cosθ+sinθ=2sin(θ+π/6)
(2)la+bl²
=a²+2a.b+b²
=1+2+4sin(θ+π/6)
=3+4sin(θ+π/6)
=>0≤la+bl²≤7
=>-√7≤la+bl≤√7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询