如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原...
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)求△APQ的高QF(用t表示);(2)在点E从B向O运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由.
展开
展开全部
1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;
(2)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;
(2)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
更多追问追答
追问
拜托看一下题目 不同的
追答
改过了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询