如图,在△ABC中,AB=AC,点D与E分别是边AC,AB上的点,且DE平行于BC,O是BD与CE的交点
如图,在△ABC中,AB=AC,点D与E分别是边AC,AB上的点,且DE平行于BC,O是BD与CE的交点。问:试说明∠ABD=∠ACE的理由,OA垂直平分DE的理由。...
如图,在△ABC中,AB=AC,点D与E分别是边AC,AB上的点,且DE平行于BC,O是BD与CE的交点。问:试说明∠ABD=∠ACE的理由,OA垂直平分DE的理由。
展开
2个回答
展开全部
∵DE∥BC
∴AE/AB=AD/AC
∵AB=AC
∴AE=AD
∠ABC=∠ACB即∠EBC=∠DCB
∴AB-AE=AC-AD即BE=CD
∵BC=BC
∴△BCE≌△BCD(SAS)
∴CE=BD
∠BCE=∠CBD
∴∠ABC-∠CBD=∠ACB-∠BCE
即∠ABD=∠ACE
2、∵∠BCE=∠CBD
即∠BCO=∠CBO
∴仔判OB=OC
∵OA=OA,AB=AC
∴△AOB≌△AOC(SSS)
∴∠BAO=∠CAO
∵AE=AD即△ADE是等腰三角形
∴OA是△ADE底边DE的此戚虚高,中线
∴森燃OA垂直平分DE
∴AE/AB=AD/AC
∵AB=AC
∴AE=AD
∠ABC=∠ACB即∠EBC=∠DCB
∴AB-AE=AC-AD即BE=CD
∵BC=BC
∴△BCE≌△BCD(SAS)
∴CE=BD
∠BCE=∠CBD
∴∠ABC-∠CBD=∠ACB-∠BCE
即∠ABD=∠ACE
2、∵∠BCE=∠CBD
即∠BCO=∠CBO
∴仔判OB=OC
∵OA=OA,AB=AC
∴△AOB≌△AOC(SSS)
∴∠BAO=∠CAO
∵AE=AD即△ADE是等腰三角形
∴OA是△ADE底边DE的此戚虚高,中线
∴森燃OA垂直平分DE
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询