已知在x轴的双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点。若△A
已知在x轴的双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点。若△AOF的面积为b平方,则双曲线的离心率等于?...
已知在x轴的双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点。若△AOF的面积为b平方,则双曲线的离心率等于?
展开
展开全部
以OF为直径的圆与双曲线交于O,A二点,是有角OAF=90度.故有FA=b
S(AOF)=1/2AO*AF=b^2
AO=2b
又有OF^2=OA^2+AF^2
c^2=4b^2+b^2=5b^2=5(c^2-a^2)
4c^2=5a^2
e^2=c^2/a^2=5/4
e=根号5/2
S(AOF)=1/2AO*AF=b^2
AO=2b
又有OF^2=OA^2+AF^2
c^2=4b^2+b^2=5b^2=5(c^2-a^2)
4c^2=5a^2
e^2=c^2/a^2=5/4
e=根号5/2
追问
AO=2b怎么弄的,,说详细点吗
追答
做的是与渐进线相交,上面写掉了"渐进线"
得到AF垂直于OA,即有焦点到渐直线的距离是AF=b,(这个是经过证明的)
又面积S=1/2AO*AF=b^2
1/2AO*b=b^2
AO=2b
展开全部
设双曲线方程为x^2/a^2-y^2/b^2=1,F(c,0),
设A(x,b/a*x),AOF是直角三角形,c^2=a^2+b^2,a,b是三角形的两直角边,1/2*c*b/a*x=1/2*a*b=b^2,
a=2b,
则离心率=c/a=b√5/2b=√5/2
设A(x,b/a*x),AOF是直角三角形,c^2=a^2+b^2,a,b是三角形的两直角边,1/2*c*b/a*x=1/2*a*b=b^2,
a=2b,
则离心率=c/a=b√5/2b=√5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询