设(an)是首项为1的正项数列,且(n+1)a^2n+1-na^2n+an+1*an=0(n=1,2,3,...).求它的通项公式an
1个回答
2013-05-13
展开全部
(n+1)*a(n+1)^2-n*an^2+an*a(n+1)=0
n*(a(n+1)^2-an^2)+a(n+1)^2+an*a(n+1)=0
(a(n+1)+an)((n+1)*a(n+1)-n*an)=0
又{an}为正项数列,(n+1)*a(n+1)-n*an=0
(n+1)*a(n+1)=n*an
1*a1=1
an=1/n
n*(a(n+1)^2-an^2)+a(n+1)^2+an*a(n+1)=0
(a(n+1)+an)((n+1)*a(n+1)-n*an)=0
又{an}为正项数列,(n+1)*a(n+1)-n*an=0
(n+1)*a(n+1)=n*an
1*a1=1
an=1/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询