大神们教教我吧!
甲从东村去西村,乙、丙、丁从西村去东村,四人同时出发,甲、乙、丁每小时分别走3km、4.5km、2km,甲、丙相遇之处恰好在甲与乙和甲与丁相遇地点的正中,求丙的速度?...
甲从东村去西村,乙、丙、丁从西村去东村,四人同时出发,甲、乙、丁每小时分别走3km、4.5km、2km,甲、丙相遇之处恰好在甲与乙和甲与丁相遇地点的正中,求丙的速度?
展开
2个回答
展开全部
将东西两村之间的距离看作单位1
甲乙速度之比=3:4.5=2:3
那么甲乙相遇时甲乙相遇点距离东村2/5
同理
甲、丁的速度之比=3:2
甲、丁相遇时距离东村距离3/5
则甲、丙相遇的距离东村(3/5-2/5)/2+2/5=1/2
所以甲丙相遇时各自走了全程的1/2,所以甲、丙的速度相等都是3千米/小时
属于相遇应用题。
甲乙速度之比=3:4.5=2:3
那么甲乙相遇时甲乙相遇点距离东村2/5
同理
甲、丁的速度之比=3:2
甲、丁相遇时距离东村距离3/5
则甲、丙相遇的距离东村(3/5-2/5)/2+2/5=1/2
所以甲丙相遇时各自走了全程的1/2,所以甲、丙的速度相等都是3千米/小时
属于相遇应用题。
追问
帮忙把算式列一下可以吗??谢谢
追答
设东西2村相距akm
则甲与乙相遇时间=a÷(3+4.5)=2a/15
甲与丁相遇时间=a÷(3+2)=a/5
甲与乙相遇时甲走了3×2a/15=2a/5km
甲与丁相遇时甲走了3×a/5=3a/5km
甲丙相遇处甲走了(2a/5+3a/5)÷2=a/2km
所以丙也走了a/2km
所以丙的速度=甲的速度=3km/小时
展开全部
解:设从东村到西村的距离为Skm,甲乙、甲丁、甲丙相遇用时分别为t1、t2、t3小时,丙的速度为xkm/小时;
则依据题意有:3t1+4.5t1=s,3t2+2t2=s,3t3+xt3=s
t1=s/7.5,t2=s/5,t3=s/(x+3)
甲乙和甲丙相遇之间的距离的中点=[(3s/5)-(3s/7.5)]/2
=s/10
∴有:(s/10)+[xs/(x+3)]+(3s/7.5)=s
解之得:x=3
则依据题意有:3t1+4.5t1=s,3t2+2t2=s,3t3+xt3=s
t1=s/7.5,t2=s/5,t3=s/(x+3)
甲乙和甲丙相遇之间的距离的中点=[(3s/5)-(3s/7.5)]/2
=s/10
∴有:(s/10)+[xs/(x+3)]+(3s/7.5)=s
解之得:x=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询