如图,D为等边三角形ABC外一点,且BD=CD,角BDC=120°,M,N分别在AB,AC上,MB+CN=MN.求角MDN的度数.
2个回答
2013-05-14
展开全部
延长AC至E使得CE=BM,连接DE。
因为,BD = CD,∠DBM = ∠DCE,BM = CE,
所以,△BDM ≌ △CDE ;
可得:DM = DE,∠MDE = ∠MDC+∠CDE = ∠MDC+∠MDB = 120°。
因为,DM = DE,MN = BM+CN = CE+CN = EN,DN为公共边,
所以,△DMN ≌ △DEN ;
可得:∠MDN = ∠EDN = (1/2)∠MDE = 60°。
因为,BD = CD,∠DBM = ∠DCE,BM = CE,
所以,△BDM ≌ △CDE ;
可得:DM = DE,∠MDE = ∠MDC+∠CDE = ∠MDC+∠MDB = 120°。
因为,DM = DE,MN = BM+CN = CE+CN = EN,DN为公共边,
所以,△DMN ≌ △DEN ;
可得:∠MDN = ∠EDN = (1/2)∠MDE = 60°。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询