一道数学题目求解,17题
4个回答
展开全部
解:(1)∵m⊥n ∴(cos2B-2)/(2sinB)(1+sinB) = -1
2sinB + 2sin²B = 1+2sin²B
2sinB = 1
sinB = 1/2
∴ B = π/6 或 B = 5π/6
(2)若 a = √3 , b = 1
sinA = asinB/b = √3/2
又∵b < a
∴ B为锐角,此时 B = π/6
A = π/3 或 A = 2π/3
当 A = π/3 时 C = π/2,此时:c = 2
当 A = 2π/3时 C = π/6 ,此时:c = b = 1
2sinB + 2sin²B = 1+2sin²B
2sinB = 1
sinB = 1/2
∴ B = π/6 或 B = 5π/6
(2)若 a = √3 , b = 1
sinA = asinB/b = √3/2
又∵b < a
∴ B为锐角,此时 B = π/6
A = π/3 或 A = 2π/3
当 A = π/3 时 C = π/2,此时:c = 2
当 A = 2π/3时 C = π/6 ,此时:c = b = 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)m⊥n得:2sinB(2sin²(π/4+B/2))-(2-cos2B)=0;
即:2sinB[1-cos(π/2+B)]-2+cos2B=0; 2sinB+2sin²B-2+1-2sin²B=0
则:sinB=1/2; B=30°,或B=150°
(2)
当a=√3>b=1时,B=30°;
则a/sinA=b/sinB得:sinA=√3/2; A=60°或A=120°
则C=180°-(A+B)=90°或30°;
从而c=2或c=1
即:2sinB[1-cos(π/2+B)]-2+cos2B=0; 2sinB+2sin²B-2+1-2sin²B=0
则:sinB=1/2; B=30°,或B=150°
(2)
当a=√3>b=1时,B=30°;
则a/sinA=b/sinB得:sinA=√3/2; A=60°或A=120°
则C=180°-(A+B)=90°或30°;
从而c=2或c=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m*n=0=2sinB*2sin²(π/4+B/2)-2+cos2B=2sinB*(1-cos(B+π/2))-2+cos2B
=2sinB*(1+sinB)-2+2cosB*cosB-1=2sinB-1
sinB=1/2 B=30或150
2.a/sina=b/sinb a=60或120 显然b不能150只能30度
b=30 a=60度是c=90 c=2
a=120 b=30 c=30 c=1
=2sinB*(1+sinB)-2+2cosB*cosB-1=2sinB-1
sinB=1/2 B=30或150
2.a/sina=b/sinb a=60或120 显然b不能150只能30度
b=30 a=60度是c=90 c=2
a=120 b=30 c=30 c=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询