高中数学分别要学必修共多少本?如何设置的? 比如高一,二,三分别上的必修几?
感觉有点不合情理。希望熟悉的人给个答案,谢了。越详细越好 展开
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等举锋携部分。
扩展资料
必修1知识点:
1、集合(约4课时)
1)集合的含义与表示
2)集合间的基本关系
3)集合的基本运算
2、函数概念与基本初等函数(约32课时)
1)函数
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质。
2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
3)对数函数
①理解对数的概基世念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对正伏数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
7)实习作业
.理科2-1.2-2,2-3
你所说的这个是选修的内容,你有没有选修的知识点目录?。
是3本选修吗,那么多啊,
有的学校如果不学选修,而高考要考,,那考个蛋啊
总的是三本书,目录可以网上去查,这些事必选的
普通班是高一上学期必修一,目的让你入门饥租没,随后的每学期都是2本书,高二下学期是数学选修课的学习,到高三才开始耍起