如图1所示,在直角梯形ABCD中,AD‖BC,AB⊥BC,角DCB=75°,以CD为一边的等边△DCE的
1个回答
2013-05-16
展开全部
∵∠FBC=30 ,∴∠ABF=60
连接AF,BF,AD的延长线相交于点G,
∵∠FBC=30 ,∠DCB=75 ,∴∠BFC=75 ,故BC=BF
由(1)知:BA=BC,故BA=BF,∵∠ABF=60 ,∴AB=BF=FA,
又∵AD‖BC,AB⊥BC,∴∠FAG=∠G=30
∴FG =FA= FB
∵∠G=∠FBC=30 ,∠DFG=∠CFB,FB=FG
∴△BCF≌△GDF ∴DF=CF,即点F是线段CD的中点.
即有DF/CF=1.
连接AF,BF,AD的延长线相交于点G,
∵∠FBC=30 ,∠DCB=75 ,∴∠BFC=75 ,故BC=BF
由(1)知:BA=BC,故BA=BF,∵∠ABF=60 ,∴AB=BF=FA,
又∵AD‖BC,AB⊥BC,∴∠FAG=∠G=30
∴FG =FA= FB
∵∠G=∠FBC=30 ,∠DFG=∠CFB,FB=FG
∴△BCF≌△GDF ∴DF=CF,即点F是线段CD的中点.
即有DF/CF=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询