设矩阵A=(a1,a2,a3,a4),矩阵A的秩R(A)=3,且a2=a3+a4,b=a1-a2+a3-a4,求方程Ax=b的通解

lry31383
高粉答主

2013-05-16 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
Ax=0的基础解系含n-R(A)=4-3=1个向量
因为 a2=a3+a4, 所以 (0,1,-1,-1)^T 是Ax=0的基础解系.
因为 b=a1-a2+a3-a4, 所以 (1,-1,1,-1)^T 是Ax=b的解
所以方程组Ax=b的通解为 (1,-1,1,-1)^T+c(0,1,-1,-1)^T
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式