
已知函数f(x)=㏑x-ax(a∈R)求函数f(x)的单调区间 40
2个回答
展开全部
利用函数导数的意义来求单调区间
显然x>0
f(x)=㏑x-ax(a∈R)
所以f'(x)=1/x-a
因为a∈R
当a=0时,f(x)=lnx在整个定义域内恒为增函数
当a不等于0时
令1/x-a=0
解得:x=1/a
当f'(x)>0时,解得:x<1/a
当f'(x)<0时,解得:x>1/a
综合可得:当x≥1/a时,f(x)为减函数
当x<1/a时,f(x)为增函数
显然x>0
f(x)=㏑x-ax(a∈R)
所以f'(x)=1/x-a
因为a∈R
当a=0时,f(x)=lnx在整个定义域内恒为增函数
当a不等于0时
令1/x-a=0
解得:x=1/a
当f'(x)>0时,解得:x<1/a
当f'(x)<0时,解得:x>1/a
综合可得:当x≥1/a时,f(x)为减函数
当x<1/a时,f(x)为增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |