求此题过程

答案为... 答案为 展开
百度网友b20b593
高粉答主

2013-05-16 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.3亿
展开全部
|a|=√2,|b|=1,
对一切实数X,|a+xb|≥|a+b|恒成立
即|a+xb|²≥|a+b|²
即|a|²+x²|b|²+2xa●b≥|a|²+|b|²+2a●b
x²+2√2xcos<a,b> -(1+2√2cos<a,b>)≥0
对一切实数X,|a+xb|≥|a+b|恒成立
∴Δ=8cos²<a,b>+4(1+2√2cos<a,b>)≤0
即cos²<a,b>+√2*cos<a,b>+1/2≤0
(cos<a,b>+√2/2)²≤0
∴cos<a,b>+√2/2=0
∴cos<a,b>=-√2/2
∵<a,b>∈[0,π]
∴a与b的夹角<a,b>=3π/4
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式