1个回答
2013-05-17
展开全部
等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数。
推论
1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
2. 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。 [编辑本段]二、等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:
今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?
书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了Sn=(a1+an)/2×n的求和公式 [编辑本段]三、等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3. [编辑本段]四、等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .
⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小. 等比数列 简介与公式 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=(a1-an*q)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q≠ 1)
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)无穷递缩等比数列各项和公式:
无穷递缩等比数列各项和公式:对于等比数列 的前n 项和,当n 无限增大时的极限,叫做这个无穷递缩数列的各项和。 [编辑本段]性质 ①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数。
推论
1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
2. 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。 [编辑本段]二、等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:
今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?
书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了Sn=(a1+an)/2×n的求和公式 [编辑本段]三、等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3. [编辑本段]四、等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .
⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小. 等比数列 简介与公式 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=(a1-an*q)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q≠ 1)
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)无穷递缩等比数列各项和公式:
无穷递缩等比数列各项和公式:对于等比数列 的前n 项和,当n 无限增大时的极限,叫做这个无穷递缩数列的各项和。 [编辑本段]性质 ①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询