在三角形ABC中,内角ABC的边长分别为abc,且满足A+C=3B,cos(B+C)=-3/5 1:
在三角形ABC中,内角ABC的边长分别为abc,且满足A+C=3B,cos(B+C)=-3/51:求sinC的值2若a=5,求三角形面积另外sin2A与sinA是什么关系...
在三角形ABC中,内角ABC的边长分别为abc,且满足A+C=3B,cos(B+C)=-3/5
1:求sinC的值
2若a=5,求三角形面积
另外sin2A与sinA是什么关系,怎么转化 展开
1:求sinC的值
2若a=5,求三角形面积
另外sin2A与sinA是什么关系,怎么转化 展开
2个回答
展开全部
cosA = cos(π-(B+C)) = -cos(B+C) = 3/5
sinA = √(1-(3/5)² = 4/5
A+B+C= B+3B =π
B=π/4
1
sinC = sin(π-(A+B)) = sin(A+B)
= sinAcosB + cosAsinB
= 4/5 * √2/2 + 3/5 * √2/2
= √2/2 * (4/5 +3/5)
= 7√2/10
2
正弦定理
a/sinA = b/sinB =k
k = a/sinA =5/(4/5)= 25/4
b = k sinB = 25/4 * √2/2 = 25√2/8
三角形面积= 1/2 a*b *sinC = 1/2 * 5 * 25√2/8 * 7√2/10
= 25*7/16
= 175/16
3
sin2A = 2sinAcosA
sinA = √(1-(3/5)² = 4/5
A+B+C= B+3B =π
B=π/4
1
sinC = sin(π-(A+B)) = sin(A+B)
= sinAcosB + cosAsinB
= 4/5 * √2/2 + 3/5 * √2/2
= √2/2 * (4/5 +3/5)
= 7√2/10
2
正弦定理
a/sinA = b/sinB =k
k = a/sinA =5/(4/5)= 25/4
b = k sinB = 25/4 * √2/2 = 25√2/8
三角形面积= 1/2 a*b *sinC = 1/2 * 5 * 25√2/8 * 7√2/10
= 25*7/16
= 175/16
3
sin2A = 2sinAcosA
展开全部
(B+C)=180-A
cos(B+C)=-cosA=-3/5
cosA=3/5
sinA=4/5
满足A+C=3B
180-B=3B B=45
cos(45+C)=-3/5
sin(45+C)=4/5
cos45cosC-sin45sinC= -3/5
sin45cosC+cos45sinC= 4/5
sinC=7√2/10
a/sinA=b/sinB
bsinA=a*sinB b=25√2/8
面积S=1/2*absinC=1/2*5*25√2/8*7√2/10=175/16
cosA=3/5
sinA=4/5
sin(2A)=2sinAcosA=24/25
cos(B+C)=-cosA=-3/5
cosA=3/5
sinA=4/5
满足A+C=3B
180-B=3B B=45
cos(45+C)=-3/5
sin(45+C)=4/5
cos45cosC-sin45sinC= -3/5
sin45cosC+cos45sinC= 4/5
sinC=7√2/10
a/sinA=b/sinB
bsinA=a*sinB b=25√2/8
面积S=1/2*absinC=1/2*5*25√2/8*7√2/10=175/16
cosA=3/5
sinA=4/5
sin(2A)=2sinAcosA=24/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询