展开全部
设通项公式为a(n)=a+(n-1)b
由a3+a4+a5=42,得a+2b+a+3b+a+4b=42;(1)
由a8=30,得a+7b=30; (2)
由(1),(2)解方程后得a=2,b=4;
所以通项式为a(n)=2+4(n-1),即a(n)=4n-2
由a3+a4+a5=42,得a+2b+a+3b+a+4b=42;(1)
由a8=30,得a+7b=30; (2)
由(1),(2)解方程后得a=2,b=4;
所以通项式为a(n)=2+4(n-1),即a(n)=4n-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询