已知:如图,△ABC是边长3cm的等边三角形,动点P,Q同时从A,B两点出发

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动... 已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:

(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
不要用sin
展开
匿名用户
2013-05-17
展开全部
解:根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=1/2BP,即t=1/2
追问
第二问会么
追答
过P作PM⊥BC于M .Rt△BPM中,sin∠B= ,
∴PM=PB•sin∠B= (3-t ).∴S△PBQ= BQ•PM= • t • (3-t ).
∴y=S△ABC-S△PBQ= ×32× - • t • (3-t )= .
∴y与t的关系式为: y= .
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的 ,
则S四边形APQC= S△ABC .∴ = × ×32× .
∴t 2-3 t+3=0.∵(-3) 2-4×1×3<0,
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式