sinθ+cosθ=1/5,θ∈(0,π)求 ①tanθ ②sinθ-cosθ ③sin^6θ-cos^6θ
2个回答
展开全部
答:
3)sinθ+cosθ=1/5
两边平方:(sinθ)^2+2sinθcosθ+(cosθ)^2=1/25
所以;sinθcosθ=-12/25
原式=(sinθ)^6-(cosθ)^6
=[(sinθ)^3+(cosθ)^3]*[(sinθ)^3-(cosθ)^3]
=(sinθ+cosθ)[(sinθ)^2-sinθcosθ+(cosθ)^2]*(sinθ-cosθ)[(sinθ)^2+sinθcosθ+(cosθ)^2]
=(1/5)(1+12/25)(7/5)(1-12/25)
=3367/15625
=0.215488
3)sinθ+cosθ=1/5
两边平方:(sinθ)^2+2sinθcosθ+(cosθ)^2=1/25
所以;sinθcosθ=-12/25
原式=(sinθ)^6-(cosθ)^6
=[(sinθ)^3+(cosθ)^3]*[(sinθ)^3-(cosθ)^3]
=(sinθ+cosθ)[(sinθ)^2-sinθcosθ+(cosθ)^2]*(sinθ-cosθ)[(sinθ)^2+sinθcosθ+(cosθ)^2]
=(1/5)(1+12/25)(7/5)(1-12/25)
=3367/15625
=0.215488
展开全部
(sinθ+cosθ)²=1/25,
sinθcosθ=-12/25
③sin^6θ-cos^6θ
=(sin³θ)²-(cos³θ)²
=(sin³θ-cos³θ)(sin³θ+cos³θ)
=(sinθ+cosθ)(sinθ-cosθ)(1+sinθcosθ)(1-sinθcosθ)
=(1/5)(7/5)(1-sin²θcos²θ)
=(1/7)(1-144/625)
=(1/7)(481/625)
=
sinθcosθ=-12/25
③sin^6θ-cos^6θ
=(sin³θ)²-(cos³θ)²
=(sin³θ-cos³θ)(sin³θ+cos³θ)
=(sinθ+cosθ)(sinθ-cosθ)(1+sinθcosθ)(1-sinθcosθ)
=(1/5)(7/5)(1-sin²θcos²θ)
=(1/7)(1-144/625)
=(1/7)(481/625)
=
追问
缺了最后结果,不过还是谢啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询