一道经典智力题:聪明人都做一下,看看自己聪不聪明。
从2-99之间任取两个数,把和告诉b,把积告诉a,b对a说:“我不能确定这两个数,但我肯定你也不知道。”a回答说:“我本来不能确定这两个数,但听你这么说我现在确定了。”b...
从2-99之间任取两个数,把和告诉b,把积告诉a,b对a说:“我不能确定这两个数,但我肯定你也不知道。”a回答说:“我本来不能确定这两个数,但听你这么说我现在确定了。”b对a说:“既然你能确定这两个数那我也知道了。”请问是哪两个数?
展开
展开全部
4;13 过程很麻烦的哦~
这个题原来是这样的:
鬼谷子先生有两个绝顶聪明的门徒,一个叫孙宾(后来改名孙膑),一个叫庞涓。
有一天鬼谷子对他们说:“两个大于1而小于100的自然数相加等于一个和,相乘等于一个积。谁能猜出我说的这两个自然数是多少?”
庞涓说:“条件太少了。和积都不知道,我没有办法算。”
“好,你附耳过来。”鬼谷子悄悄地告诉庞涓和是多少。然后又悄悄地告诉孙宾积是多少。
“现在你们分别知道和积,谁能说出答案?”
庞涓想了一会,得意地说:“虽然我不知道答案是哪两个自然数,但是我知道孙宾也不知道这两个数是多少!”
孙宾淡淡一笑:“听你一说,现在我倒知道这两个数是多少了。”
庞涓大吃一惊:“慢,你先别说答案。”他又想了一会说:“师傅,我也知道这两个数是多少了。”
你知道这两个自然数是多少吗???
此题有很多的翻版,是一道很经典的素数推理题,最早我在初中兴趣班做过1道类似的
为了不至于篇幅太长,我就着重讲最快的思路,而不是完美的验证
推理过程:
庞涓想了一会,得意地说:“虽然我不知道答案是哪两个自然数,但是我知道孙宾也不知道这两个数是多少!”
孙宾不知道这两个数字是多少,说明这两个数字不可能都是质数,如果是质数
那只有一种积的分解方式那孙宾将立刻推出结果
举例 任取两质数 11*17 积为187只有一种拆法
同样积不可能有大于50的质数因子,否则积只有一种拆分方法(其他拆分方法必有大于100的因子)。
举例 大于50的质数因子53 53*6=318318可拆为53*6 106*3 159*2那就排除了两种也能唯一确定一种了
既然庞涓可以肯定孙宾不知道这两个数字,说明这两个数的和不可能分解为两个质数的和。
因为任何大于4的偶数都可以分解为两个质数之和(哥德巴赫猜想),所以,这和必为奇数,也就是说这两个数是一奇一偶。
同样和不可能等于“质数+2”因为2也是质数所以。。2排除了先,和不可能大于54。因为任何大于54的数都可以拆分成53+X的形式,而53和任意自然数的积一定有质因数53,53是大于50的质数因子前面已经验证是不行的
排除法质数3 5 7 11 13 17 19 23 29 31 37 41 43 47 (50以下)
把这些数+2 排除。。因为前面已证明质数+2 是不可行的
这样两数之和的范围大大缩小。那么这两个数的和只可能等于:
11 17 23 27 29 35 37 41 47 中的一个。
孙宾淡淡一笑:“听你一说,现在我倒知道这两个数是多少了。”
这句话的含义是什么呢?
意思是原来他得到的积有N种拆分方式现在对方透露了和不能拆成两个质数,于是他明白了
把原来能拆成两个质数的方式排除掉了剩下唯一一种 确定了数
看看各种可能的和的各种拆分方式所得到的积:
11(2*9=18、3*8=24、4*7=28、5*6=30)
17(2*15=30、3*14=42、4*13=52、5*12=60、6*11=66、7*10=70、8*9=72)
23(2*21=42、……)
……
47(……)
可以看出,30、42等作为积出现了不止一次,所以两数之积不可能是30、42等。
这是什么意思呢意思是1个数有N种拆分方式都不会导致拆出来两个都是质数,那自然也是不能确定
我们把这样的数从上表中划去,剩下的数就是可能的积
庞涓大吃一惊:“慢,你先别说答案。”他又想了一会说:“师傅,我也知道这两个数是多少了。”
这句话说明,他的和的拆分方式只有一种可以排除拆分成质数就唯一确定一种的
11可拆分为4+7和8+3,均为可能拆分。(因为28和24均不可能有其它的奇数*偶数的表示形式了,只能有偶数*偶数的别的形式比如4*6 但4+6=10 不符合和是奇数的要求)。
2+9 因为2的关系排除了5+6因为30有重复的关系 排除 17
(2*15=30、3*14=42、4*13=52、5*12=60、6*11=66、7*10=70、8*9=72)
这里再心算验证下会发现别的要不就是不能保证拆分成1个质数+1合数
要不就是有2种方案可以拆成质数+合数。
只有4*13一种拆分方法。
所以答案: 4和13!
这个题原来是这样的:
鬼谷子先生有两个绝顶聪明的门徒,一个叫孙宾(后来改名孙膑),一个叫庞涓。
有一天鬼谷子对他们说:“两个大于1而小于100的自然数相加等于一个和,相乘等于一个积。谁能猜出我说的这两个自然数是多少?”
庞涓说:“条件太少了。和积都不知道,我没有办法算。”
“好,你附耳过来。”鬼谷子悄悄地告诉庞涓和是多少。然后又悄悄地告诉孙宾积是多少。
“现在你们分别知道和积,谁能说出答案?”
庞涓想了一会,得意地说:“虽然我不知道答案是哪两个自然数,但是我知道孙宾也不知道这两个数是多少!”
孙宾淡淡一笑:“听你一说,现在我倒知道这两个数是多少了。”
庞涓大吃一惊:“慢,你先别说答案。”他又想了一会说:“师傅,我也知道这两个数是多少了。”
你知道这两个自然数是多少吗???
此题有很多的翻版,是一道很经典的素数推理题,最早我在初中兴趣班做过1道类似的
为了不至于篇幅太长,我就着重讲最快的思路,而不是完美的验证
推理过程:
庞涓想了一会,得意地说:“虽然我不知道答案是哪两个自然数,但是我知道孙宾也不知道这两个数是多少!”
孙宾不知道这两个数字是多少,说明这两个数字不可能都是质数,如果是质数
那只有一种积的分解方式那孙宾将立刻推出结果
举例 任取两质数 11*17 积为187只有一种拆法
同样积不可能有大于50的质数因子,否则积只有一种拆分方法(其他拆分方法必有大于100的因子)。
举例 大于50的质数因子53 53*6=318318可拆为53*6 106*3 159*2那就排除了两种也能唯一确定一种了
既然庞涓可以肯定孙宾不知道这两个数字,说明这两个数的和不可能分解为两个质数的和。
因为任何大于4的偶数都可以分解为两个质数之和(哥德巴赫猜想),所以,这和必为奇数,也就是说这两个数是一奇一偶。
同样和不可能等于“质数+2”因为2也是质数所以。。2排除了先,和不可能大于54。因为任何大于54的数都可以拆分成53+X的形式,而53和任意自然数的积一定有质因数53,53是大于50的质数因子前面已经验证是不行的
排除法质数3 5 7 11 13 17 19 23 29 31 37 41 43 47 (50以下)
把这些数+2 排除。。因为前面已证明质数+2 是不可行的
这样两数之和的范围大大缩小。那么这两个数的和只可能等于:
11 17 23 27 29 35 37 41 47 中的一个。
孙宾淡淡一笑:“听你一说,现在我倒知道这两个数是多少了。”
这句话的含义是什么呢?
意思是原来他得到的积有N种拆分方式现在对方透露了和不能拆成两个质数,于是他明白了
把原来能拆成两个质数的方式排除掉了剩下唯一一种 确定了数
看看各种可能的和的各种拆分方式所得到的积:
11(2*9=18、3*8=24、4*7=28、5*6=30)
17(2*15=30、3*14=42、4*13=52、5*12=60、6*11=66、7*10=70、8*9=72)
23(2*21=42、……)
……
47(……)
可以看出,30、42等作为积出现了不止一次,所以两数之积不可能是30、42等。
这是什么意思呢意思是1个数有N种拆分方式都不会导致拆出来两个都是质数,那自然也是不能确定
我们把这样的数从上表中划去,剩下的数就是可能的积
庞涓大吃一惊:“慢,你先别说答案。”他又想了一会说:“师傅,我也知道这两个数是多少了。”
这句话说明,他的和的拆分方式只有一种可以排除拆分成质数就唯一确定一种的
11可拆分为4+7和8+3,均为可能拆分。(因为28和24均不可能有其它的奇数*偶数的表示形式了,只能有偶数*偶数的别的形式比如4*6 但4+6=10 不符合和是奇数的要求)。
2+9 因为2的关系排除了5+6因为30有重复的关系 排除 17
(2*15=30、3*14=42、4*13=52、5*12=60、6*11=66、7*10=70、8*9=72)
这里再心算验证下会发现别的要不就是不能保证拆分成1个质数+1合数
要不就是有2种方案可以拆成质数+合数。
只有4*13一种拆分方法。
所以答案: 4和13!
展开全部
楼主说的 是 从2到99间任取2个数,不是说2个 自然数呀。
暂时无解,如果是自然数,那还 好说,楼上的就是了
暂时无解,如果是自然数,那还 好说,楼上的就是了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
4和13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
4和13?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询