如图,在梯形ABCD中,AD‖BC,对角线AC,BD相交于O,过O作EF‖BC交AB于E,DC于F (1)求证OE=OF
展开全部
1、∵AD∥BC
∴∠ADO=∠CBO,∠DAO=∠BCO
∴△AOD∽△BOC
∴OD/OB=AO/OC
即OD/BD=AO/AC
∵EF∥BC
∴△AOE∽△ABC,△DOF∽△DBC
∴OE/BC=AO/AC,OD/BD=OF/BC
∴OE/BC=OF/BC
∴OE=OF
2、∵EF∥AD,EF∥BC
∴OE/AD=OB/BD OE/BC=OD/BD
两个式子相加,可以得到OE/AD+OE/BC=1
再把OE除过去,就可以得到1/AD+1/BC=1/OE
因为OE=OF ,所以EF=2OE
所以有1/AD+1/BC=2/EF
∴∠ADO=∠CBO,∠DAO=∠BCO
∴△AOD∽△BOC
∴OD/OB=AO/OC
即OD/BD=AO/AC
∵EF∥BC
∴△AOE∽△ABC,△DOF∽△DBC
∴OE/BC=AO/AC,OD/BD=OF/BC
∴OE/BC=OF/BC
∴OE=OF
2、∵EF∥AD,EF∥BC
∴OE/AD=OB/BD OE/BC=OD/BD
两个式子相加,可以得到OE/AD+OE/BC=1
再把OE除过去,就可以得到1/AD+1/BC=1/OE
因为OE=OF ,所以EF=2OE
所以有1/AD+1/BC=2/EF
追问
要证的是1/AB+1/CD=2/EF,我在想是题目错了吗?
追答
应该是题的问题。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询