用余弦定理证明:在三角形ABC中,a=bcosc+cosb
1个回答
2013-05-18
展开全部
由余弦定理得 cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab 所以 bcosC+ccosB=b·(a^2+b^2-c^2)/2ab+c·(a^2+c^2-b^2)/2ac=(a^2+b^2-c^2)/2a+(a^2+c^2-b^2)/2a=2a^2/2a=a
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询