高一物理题目求解(公式、过程),有加分。
轻弹簧左端固定在墙上,右端点在O。质量为m的A以初速度v0从距离O点右方x0的P向左动,与弹簧接触后压缩弹簧到O'后,A有被弹簧弹回,恰好到P点,物块A与水平面间的动摩擦...
轻弹簧左端固定在墙上,右端点在O。质量为m的A以初速度v0从距离O点右方x0的P向左动,与弹簧接触后压缩弹簧到O'后,A有被弹簧弹回,恰好到P点,物块A与水平面间的动摩擦因素为μ。
(1)A从P点出发又回到P点的过程,克服摩擦力做的功。
(2)O点和O'点间的距离x1 展开
(1)A从P点出发又回到P点的过程,克服摩擦力做的功。
(2)O点和O'点间的距离x1 展开
2个回答
展开全部
解:
(1) 由题意得:A从P点开始的初速度未V0,回到P点的速度为0(因为题目说经过反弹后,A恰好返回到P点)
根据动能定理:W=1/2mv*v-1/2mv*v(第一个V是末速度,在题目中为0,第二个V是开始运动的初速度在题目中为v0)
得合外力功W=-1/2mv*v
对A进行受力分析,只有摩擦力做功(重力垂直于水平面,所以不做功)
又∵W=FS(W为合外力所做的功)
∴-1/2mV0*V0=-fs
所以,克服摩擦力做功为1/2mV0*V0
2.
由W=-fs=-1/2mv0*v0可以得
s=1/2mv0*v0除以f
又因为S=2次往返(s1),f=mgμ
∴s1=v0*v0/(2gμ) 所以这两点的距离是s1-x0=v0*v0/(2gμ)-x0
求给分,挣点分不容易啊,我自己也做的不容易
(1) 由题意得:A从P点开始的初速度未V0,回到P点的速度为0(因为题目说经过反弹后,A恰好返回到P点)
根据动能定理:W=1/2mv*v-1/2mv*v(第一个V是末速度,在题目中为0,第二个V是开始运动的初速度在题目中为v0)
得合外力功W=-1/2mv*v
对A进行受力分析,只有摩擦力做功(重力垂直于水平面,所以不做功)
又∵W=FS(W为合外力所做的功)
∴-1/2mV0*V0=-fs
所以,克服摩擦力做功为1/2mV0*V0
2.
由W=-fs=-1/2mv0*v0可以得
s=1/2mv0*v0除以f
又因为S=2次往返(s1),f=mgμ
∴s1=v0*v0/(2gμ) 所以这两点的距离是s1-x0=v0*v0/(2gμ)-x0
求给分,挣点分不容易啊,我自己也做的不容易
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询