快速傅里叶变换为什么要求1024点,1000点可不可以?
东莞大凡
2024-08-07 广告
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满...
点击进入详情页
本回答由东莞大凡提供
2013-05-18
展开全部
快速傅里叶变换要求点数是2的n次方,2^10=1024,
1000点不可以直接运算,需要扩展到1024点。
1000点不可以直接运算,需要扩展到1024点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的 发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。也就是说,FFT提高了运算速度,但是,也对参与运算的样本序列作出了限制,即要求样本数为2^N点。1024=2^10满足FFT运算要求。1000点则不满足,若采用1000点,FFT算法会在其后补零,自动不足1024点,但是,这样,被分析的样本就变了,结果误差较大。
在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。也就是说,FFT提高了运算速度,但是,也对参与运算的样本序列作出了限制,即要求样本数为2^N点。1024=2^10满足FFT运算要求。1000点则不满足,若采用1000点,FFT算法会在其后补零,自动不足1024点,但是,这样,被分析的样本就变了,结果误差较大。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询