若函数f(x)=x³-3bx+3b在(0,1)内有极小值,则b的取值范围

 我来答
wang810249869
2013-05-19 · TA获得超过5827个赞
知道大有可为答主
回答量:1314
采纳率:100%
帮助的人:528万
展开全部
解析:
f'(x)=3x²-3b
因为函数f(x)=x³-3bx+3b在(0,1)内有极小值,分两种情况讨论
①-3b<0, 3-3b>0
解得0<b<3
②-3b>0,3-3b<0
b的解集是空集
所以b的取值范围为{b|0<b<3}

【数学辅导团为您答题 ,质量保证】
有什么不明白可以对该题继续追问,随时在线等
如果我的回答对你有帮助,请及时选为满意答案,谢谢
匿名用户
2018-03-17
展开全部
3-3b<0解错方程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式